Comparing Matlab and Apache statistics - kurtosis -
hi comparing statistics between matlab , apache functions. here apache functions tested in java. same set of data, different results double array (double[] ) follow:
--------------------------------------- matlab vs apache --------------------------------------- max = 0.5451 vs 0.5450980392156862 min = 0.4941 vs 0.49411764705882355 var = 5.4154e-05 vs 5.415357603461868e-5 std = 0.0074 vs 0.007358911334879547 mean = 0.5206 vs 0.5205525290240967 kurtosis = 3.3442 vs 0.35227427833465486 skewness = 0.2643 vs 0.26466432504210746
i checked , rechecked data, each value matlabs same used in java. here can see statistics identical, except kurtosis.
is possible kurtosis computed differently matlab , apache library? if so, data should trust then?
edit
my data subset of image matrix (containing pixels values). each subset compute above statistics. everytime, statistics match except kurtosis.
the matlab code computing kurtosis of subset following:
kurtosis( sub(:) ); // sub n x m matrix
while 1 used in java is:
import org.apache.commons.math3.stat.descriptive.moment.kurtosis; // ... kurtosis kurt = new kurtosis(); system.out.println("-kurtosis: " + kurt.evaluate(subimg) );
subimg being double[n x m] array.
you can calculate apache java statistics in matlab importing function. apache function uses unbiased estimator of population excess kurtosis. excess kurtosis means substracting 3 kurtosis of normal distribution equal zero.
to demonstrate made matlab function out of function (apache documentation):
function y = kurtosis_apache(x) n=length(x); mean_x = mean(x); std_x = std(x); y = ( (n*(n+1) / ((n -1)*(n - 2)*(n-3))) * sum((x - mean_x).^4) / std_x.^4 ) - ((3*(n-1).^2) / ((n-2)*(n-3))); end
and code in command window shows matlab apache implementation, java apache implementation, , matlab version (biassed/unbiassed):
javaaddpath('commons-math3-3.2.jar') import org.apache.commons.math3.stat.descriptive.moment.kurtosis; x = randn(1e4,1); kurtosis_apache(x)
ans = 0.0016
kurt = kurtosis(); kurt.evaluate(x)
ans = 0.0016
kurtosis(x)
ans = 3.0010
kurtosis(x,0)
ans = 3.0016
note matlab kurtosis documentation:
so 0 flag unbiassed matlab implementation same apache version, when substract 3 make excess kurtosis.
(kurtosis(x,0)-3)-kurt.evaluate(x)
ans = 3.8636e-14
Comments
Post a Comment